tiistai 5. toukokuuta 2015

Luento 6.5: Hermoverkot


Tänään jatkettiin hahmontunnistusjärjestelmien opiskelua.

Aluksi muisteltiin edellisen viikon asioita lyhyesti, ja vilkaistiin mm. Matlab-demoa, jolla voidaan piirtää hiirellä projektiosuora kaksiulotteisen datan koordinaatistoon. Kun kaksi pistettä suoralta on merkitty, Matlab-skripti projisoi datan tälle suoralle ja piirtää tuloksena saatavien yksiulotteisten näytteiden jakauman sekä luokitteluprosentin. Hyvillä projektiosuorilla data oli täydellisesti luokiteltavissa, mutta huonoilla joukot menivät päällekkäin projisoinnin jälkeen. Fisherin lineaarinen erottelija laskee tämän suoran automaattisesti niin että erottelu on optimaalinen.

Tämän jälkeen paneuduttiin hermoverkkoihin sekä niiden opetukseen, ja mainittiin  lyhyesti opetusalgoritmin perustuvan derivaattaan ja ketjusääntöön. Näiden avulla voidaan päätellä suunta, jossa luokitteluvirhe pienenee jyrkimmin, ja kyseiset kaavat löytyvät esim. täältä. Perus-backpropagationin lisäksi on olemassa kehittyneempiä ja nopeampia opetusalgoritmeja, ja esim. Matlabissa niitä on lähes parikymmentä. Olennaisin ero algoritmien välillä on niiden nopeudessa ja muistin tarpeessa.

Luentotauolla Matlabilla opetettiin hermoverkko, joka osasi tunnistaa eurooppalaisista rekisterikilvistä kerättyjä merkkejä.Opetus kesti noin 15 minuuttia, ja virheen kehittyminen on esitetty oikealla olevassa kuvassa. Opetuksen aikana mitattiin luokittelijan virhettä opetusaineistossa (10 000 merkkiä) sekä erillisessä testiaineistossa (1 000 merkkiä). Kuvasta nähdään että virhe oli selvästi pienempi opetusaineistolla kuin testijoukossa. Ilmiöstä käytetään nimeä ylioppiminen, ja se tarkoittaa että järjestelmä alkaa oppia opetusaineiston epäolennaisia ja satunnaisia ominaisuuksia, jotka eivät ole yleisesti voimassa. Ensisijainen ratkaisu tähän on lisätä opetusmateriaalin määrää (joko todellisella uudella datalla tai augmentoimalla käytettävissä olevaa dataa; esim. venyttelemällä kuvia, lisäämällä kohinaa jne.).

Verkkoa testattiin esimerkkikuvilla, joista näytettiin hiirellä merkin sijainti. Testissä havaittiin luokittelun toimivan täysin oikein kun merkki oli hyvin laatikon sisällä. Jos merkin lisäksi 10x10-laatikon sisällä oli muutakin, luokittelu meni väärin.

Tavallisen hermoverkon herkkyys merkin oikealle kohdistukselle on yleinen ongelma. Tämä on saatu valtaosin ratkaistua uudemmissa ns. konvoluutioverkoissa, jotka esiteltiin alun perin jo 1980-luvulla, mutta ovat saavuttaneet valtavan suosion vasta laskentatehon lisäännyttyä 2010-luvulla. Syvät (yli 3 tasoa; jopa 30 tasoa) konvoluutioverkot ovat aiheuttaneet läpimurron kuvan- ja puheentunnistuksessa. Alla on lista luennolla vilkaistuista julkaisuista (ja muuten vaan kiinnostavista tuoreista tuloksista):
CVPR-konferenssi on yksi alan merkittävimmistä foorumeista, ja laitos on ylpeä saatuaan julkaisunsa mukaan kesäkuun konferenssiin. Julkaisut ovat suurelta osin vapaasti saatavissa täällä.

Jos haluat tutustua moderneihin hermoverkkoihin, niin yleisimmin käytetyt paketit ovat Caffe, pylearn2 ja Torch7. Aiheeseen liittyvää keskustelua löytyy mm. Redditistä.

Ei kommentteja:

Lähetä kommentti