tiistai 28. huhtikuuta 2015

Luento 29.4: Koneoppiminen

Tänään aloitimme kappaleen 11, joka käsittelee hahmontunnistusta. Hahmontunnistusjärjestelmän ideana on esittää järjestelmälle näytteitä ja opettaa se tuottamaan oikea ulostulo kun sille esitetään opetusjoukkoon kuulumaton uusi näyte. Yksi oppivien järjestelmien osajoukko ovat luokittelijat, jossa ulostulo kertoo luokan johon esitetty näyte kuuluu.

Suosittuja luokittelualgoritmeja ovat ainakin seuraavat (kasvavan monimutkaisuuden järjestyksessä):

Näistä neljä ensimmäistä käsiteltiin luennolla. KNN on ideana yksinkertaisin: kaikki opetusdata pidetään muistissa ja uuden näytteen tullessa etsitään k samanlaisinta näytettä, ja valitaan näistä yleisin luokka. Tyypillisesti k on vajaan kymmenen luokkaa, mutta voi olla suurempikin; esim. 30. Mitä suurempi k on, sitä sileämpi luokkarajasta tulee. Vaikka KNN:n luokittelutulos onkin melko hyvä, on sen ongelmana suuri muistin tarve sekä laskennallinen kompleksisuus. Koko opetusjoukko täytyy nimittäin säilyttää muistissa, josta etsitään k lähintä naapuria jokaisen luokittelun yhteydessä. Sekä tilantarve että etsinnän vaatima aika voivat olla ongelmallisia jos opetusjoukossa on esim. 100000 alkiota.

Luentomonisteen seuraava menetelmä on Fisherin diskriminantti eli LDA. Tässä vilkaistiin mm. alla olevan kuvan mukaista Matlab-demoa, jolla voidaan piirtää hiirellä projektiosuora kaksiulotteisen datan koordinaatistoon. Kun kaksi pistettä suoralta on merkitty, Matlab-skripti projisoi datan tälle suoralle ja piirtää tuloksena saatavien yksiulotteisten näytteiden jakauman sekä luokitteluprosentin. Hyvillä projektiosuorilla data oli täydellisesti luokiteltavissa, mutta huonoilla joukot menivät päällekkäin projisoinnin jälkeen. Fisherin lineaarinen erottelija laskee tämän suoran automaattisesti niin että erottelu on optimaalinen.


Tukivektorikone ja logistinen regressio ovat myös lineaarisia luokittimia, mutta niiden opetusalgoritmi on eri kuin LDA:n. Tukivektorikoneen erityispiirre on sen käyttö yhdessä kernelitempun kanssa ja logistisen regression ominaisuutena on sen todennäköisyystulkinta: LR antaa myös luokan todennäköisyyden, ei pelkästään ennustettua luokkaa.

Seuraavaksi pohjustettiin seuraavan viikon hermoverkkoaihetta vilkaisemalla helmikuussa 2015 ilmestynyttä artikkelia, jossa hermoverkko opetettiin pelaamaan vanhoja Atari 2600 tietokonepelejä. Alla on video kuinka verkko pelaa Breakout-peliä. Ks. myös Google research blog.

Ei kommentteja:

Lähetä kommentti