tiistai 12. toukokuuta 2015

Luento 13.5: Audiokompressio + vanhat kandityöt


Tänään käsiteltiin ensimmäisellä tunnilla prujun viimeinen kappale: audiokompressio. Audiokompression ideana on tallentaa äänisignaali häviöllisesti poistaen bittejä sieltä missä kuulo ei niitä havaitse. Tässä auttaa kuulon ominaisuuksien tuntemus, joista olennaisin osa on kuulokäyrä. Kuulo havaitsee matalia ja korkeitä ääniä heikommin kuin keskiääniä. Tämän vuoksi epätarkemmin havaittavat taajuudet voidaan esittää pienemmällä bittimäärällä.

Tässä yhteydessä on hyvä muistaa että jokainen poistettu bitti lisää kvantisointikohinaa kuudella desibelillä. Kysymys voidaan siis asettaa muotoon: "montako kuuden desibelin palikkaa kuulokäyrän alle mahtuu kullakin taajuudella". Lisätilaa kuuden desibelin palikoille saadaan havaitsemalla, että äänet peittävät heikompia ääniä alleen. Tässä tapauksessa siis itse kompressoitava signaali peittää näitä heikompia kuuden desibelin palikoita.

Luennolla nähtiin myös esimerkki siitä miltä tulosmaski saattaisi näyttää yksittäisen piippauksen ympäristössä. Jotta kuulomallia voitaisiin käyttää, täytyy signaali jakaa taajuuskaistoihin. Tämä tehdään kaistanpäästösuotimilla, ja kaistoja mp3-standardissa on 32. Kukin kaista voidaan alinäytteistää kertoimella 32, jolloin dataa on saman verran kuin alun perin. Nämä kaistat voidaan sitten kvantisoida kuulomallin mukaisesti. Palautettaessa alkuperäistä näytteenottotaajuutta riittää tehdä ylinäytteistys (nollien lisääminen) kertoimella 32, jolloin havaitaan, että aiemmin laskostunut signaali pomppaakin oikealle paikalleen ja vieläpä oikein päin --- siinäkin tapauksessa, että se olisi sattunut laskostumaan peilikuvakseen.

Tunnin luotiin katsaus laitoksella tehtyihin kanditöihin. Työt löytyvät täältä. Tunnus on sgnkandi ja salasana motiivi.

Luennon jälkeen kommentoitiin että kandityöt näyttivät laajoilta ja vaativilta suorituksilta. On huomattava että esitellyt työt olivat kaikki parhaasta päästä; nelosen ja viitosen töitä. Lisäksi laitos pyrkii tieteellisen fokuksensa mukaisesti panostamaan kanditöihin ja niissä opiskeltavaan tieteelliseen kirjoittamiseen, joten uskon kanditöidemme olevan keskimääräisiä laajempia (ja reilusti yli 8 op arvoisia). Hyvä kandityöhän toimii myös käyntikorttina D-työpaikkaa haettaessa, joten sen tasolla on suuri merkitys tulevaisuuden kannalta.

Kiitos kaikille kurssilaisille ja hyvää kesää! Onnea tenttiin, muista antaa palautetta.

tiistai 5. toukokuuta 2015

Luento 6.5: Hermoverkot


Tänään jatkettiin hahmontunnistusjärjestelmien opiskelua.

Aluksi muisteltiin edellisen viikon asioita lyhyesti, ja vilkaistiin mm. Matlab-demoa, jolla voidaan piirtää hiirellä projektiosuora kaksiulotteisen datan koordinaatistoon. Kun kaksi pistettä suoralta on merkitty, Matlab-skripti projisoi datan tälle suoralle ja piirtää tuloksena saatavien yksiulotteisten näytteiden jakauman sekä luokitteluprosentin. Hyvillä projektiosuorilla data oli täydellisesti luokiteltavissa, mutta huonoilla joukot menivät päällekkäin projisoinnin jälkeen. Fisherin lineaarinen erottelija laskee tämän suoran automaattisesti niin että erottelu on optimaalinen.

Tämän jälkeen paneuduttiin hermoverkkoihin sekä niiden opetukseen, ja mainittiin  lyhyesti opetusalgoritmin perustuvan derivaattaan ja ketjusääntöön. Näiden avulla voidaan päätellä suunta, jossa luokitteluvirhe pienenee jyrkimmin, ja kyseiset kaavat löytyvät esim. täältä. Perus-backpropagationin lisäksi on olemassa kehittyneempiä ja nopeampia opetusalgoritmeja, ja esim. Matlabissa niitä on lähes parikymmentä. Olennaisin ero algoritmien välillä on niiden nopeudessa ja muistin tarpeessa.

Luentotauolla Matlabilla opetettiin hermoverkko, joka osasi tunnistaa eurooppalaisista rekisterikilvistä kerättyjä merkkejä.Opetus kesti noin 15 minuuttia, ja virheen kehittyminen on esitetty oikealla olevassa kuvassa. Opetuksen aikana mitattiin luokittelijan virhettä opetusaineistossa (10 000 merkkiä) sekä erillisessä testiaineistossa (1 000 merkkiä). Kuvasta nähdään että virhe oli selvästi pienempi opetusaineistolla kuin testijoukossa. Ilmiöstä käytetään nimeä ylioppiminen, ja se tarkoittaa että järjestelmä alkaa oppia opetusaineiston epäolennaisia ja satunnaisia ominaisuuksia, jotka eivät ole yleisesti voimassa. Ensisijainen ratkaisu tähän on lisätä opetusmateriaalin määrää (joko todellisella uudella datalla tai augmentoimalla käytettävissä olevaa dataa; esim. venyttelemällä kuvia, lisäämällä kohinaa jne.).

Verkkoa testattiin esimerkkikuvilla, joista näytettiin hiirellä merkin sijainti. Testissä havaittiin luokittelun toimivan täysin oikein kun merkki oli hyvin laatikon sisällä. Jos merkin lisäksi 10x10-laatikon sisällä oli muutakin, luokittelu meni väärin.

Tavallisen hermoverkon herkkyys merkin oikealle kohdistukselle on yleinen ongelma. Tämä on saatu valtaosin ratkaistua uudemmissa ns. konvoluutioverkoissa, jotka esiteltiin alun perin jo 1980-luvulla, mutta ovat saavuttaneet valtavan suosion vasta laskentatehon lisäännyttyä 2010-luvulla. Syvät (yli 3 tasoa; jopa 30 tasoa) konvoluutioverkot ovat aiheuttaneet läpimurron kuvan- ja puheentunnistuksessa. Alla on lista luennolla vilkaistuista julkaisuista (ja muuten vaan kiinnostavista tuoreista tuloksista):
CVPR-konferenssi on yksi alan merkittävimmistä foorumeista, ja laitos on ylpeä saatuaan julkaisunsa mukaan kesäkuun konferenssiin. Julkaisut ovat suurelta osin vapaasti saatavissa täällä.

Jos haluat tutustua moderneihin hermoverkkoihin, niin yleisimmin käytetyt paketit ovat Caffe, pylearn2 ja Torch7. Aiheeseen liittyvää keskustelua löytyy mm. Redditistä.

tiistai 28. huhtikuuta 2015

Luento 29.4: Koneoppiminen

Tänään aloitimme kappaleen 11, joka käsittelee hahmontunnistusta. Hahmontunnistusjärjestelmän ideana on esittää järjestelmälle näytteitä ja opettaa se tuottamaan oikea ulostulo kun sille esitetään opetusjoukkoon kuulumaton uusi näyte. Yksi oppivien järjestelmien osajoukko ovat luokittelijat, jossa ulostulo kertoo luokan johon esitetty näyte kuuluu.

Suosittuja luokittelualgoritmeja ovat ainakin seuraavat (kasvavan monimutkaisuuden järjestyksessä):

Näistä neljä ensimmäistä käsiteltiin luennolla. KNN on ideana yksinkertaisin: kaikki opetusdata pidetään muistissa ja uuden näytteen tullessa etsitään k samanlaisinta näytettä, ja valitaan näistä yleisin luokka. Tyypillisesti k on vajaan kymmenen luokkaa, mutta voi olla suurempikin; esim. 30. Mitä suurempi k on, sitä sileämpi luokkarajasta tulee. Vaikka KNN:n luokittelutulos onkin melko hyvä, on sen ongelmana suuri muistin tarve sekä laskennallinen kompleksisuus. Koko opetusjoukko täytyy nimittäin säilyttää muistissa, josta etsitään k lähintä naapuria jokaisen luokittelun yhteydessä. Sekä tilantarve että etsinnän vaatima aika voivat olla ongelmallisia jos opetusjoukossa on esim. 100000 alkiota.

Luentomonisteen seuraava menetelmä on Fisherin diskriminantti eli LDA. Tässä vilkaistiin mm. alla olevan kuvan mukaista Matlab-demoa, jolla voidaan piirtää hiirellä projektiosuora kaksiulotteisen datan koordinaatistoon. Kun kaksi pistettä suoralta on merkitty, Matlab-skripti projisoi datan tälle suoralle ja piirtää tuloksena saatavien yksiulotteisten näytteiden jakauman sekä luokitteluprosentin. Hyvillä projektiosuorilla data oli täydellisesti luokiteltavissa, mutta huonoilla joukot menivät päällekkäin projisoinnin jälkeen. Fisherin lineaarinen erottelija laskee tämän suoran automaattisesti niin että erottelu on optimaalinen.


Tukivektorikone ja logistinen regressio ovat myös lineaarisia luokittimia, mutta niiden opetusalgoritmi on eri kuin LDA:n. Tukivektorikoneen erityispiirre on sen käyttö yhdessä kernelitempun kanssa ja logistisen regression ominaisuutena on sen todennäköisyystulkinta: LR antaa myös luokan todennäköisyyden, ei pelkästään ennustettua luokkaa.

Seuraavaksi pohjustettiin seuraavan viikon hermoverkkoaihetta vilkaisemalla helmikuussa 2015 ilmestynyttä artikkelia, jossa hermoverkko opetettiin pelaamaan vanhoja Atari 2600 tietokonepelejä. Alla on video kuinka verkko pelaa Breakout-peliä. Ks. myös Google research blog.

tiistai 21. huhtikuuta 2015

Luento 22.4: Kuvankäsittely


Tänään paneuduttiin kappaleeseen 10 (ks. kurssimonisteen liite), joka tarkastelee kuvankäsittelyä.

Alkuosa koostuu enimmäkseen yksiulotteisten lineaaristen järjestelmien yleistyksestä kahteen ulottuvuuteen. Fourier-muunnoksen yhteydessä todettiin, että kaksiulotteinen tapaus voidaan toteuttaa kahden yksiulotteisen FFT:n avulla, mikä mahdollistaa nopean laskennan.

Tämän jälkeen tarkasteltiin dekonvoluutiota, eli konvoluution käänteistä operaatiota. Monisteen esimerkin lisäksi esimerkkinä mainittiin Hubble-avaruusteleskoopin varhainen ongelma, joka aiheutti kuvaan jonkin verran epätarkkuutta. Ennen kuin kiertoradalle päästiin korjaamaan linssi kuntoon, täytyi linssin virhe mallintaa konvoluution avulla. Varhaisia kuvia myös korjattiin dekonvoloimalla virheelliset kuvat. Linssi kuitenkin lopulta vaihdettiin, koska dekonvoluutio ei voi tuottaa yhtä täydellistä tulosta kuin fyysinen korjaus. Tämä johtuu siitä, että PSF ei koskaan ole täysin oikea, vaan siinä on numeerista epätarkkuutta. Lisäksi informaatiota saattaa kadota konvoluution yhteydessä, jos taajuustason funktiossa H(n,m) on nollia kertoimina.

Kolmantena aiheena kappale tarkastelee piste-ehostusta: kontrastin parannusta gamma-korjauksella sekä histogrammin ekvalisoinnilla. Molemmat löytyvät kaikista kuvankäsittelyohjelmista. Lisäksi vilkaistiin Androidin tarjoamia 3A-kuvankäsittelyoperaatioita, joihin kuuluvat auto exposure, auto-white-balance sekä auto-focus.

Aivan lopuksi tutustuttiin sovelluksena automaattiseen rekisterikilven tunnistukseen, jota olen ollut kehittämässä tamperelaisessa Visy Oy:ssä sivutoimisesti jo toistakymmentä vuotta.

tiistai 14. huhtikuuta 2015

Luento 15.4: Interpolointi D/A-muunnoksessa sekä signaalprosessorit


Ensimmäisen tunnin aiheena oli 1-bittinen D/A-muunnos, jonka tavoitteena on yksinkertaistaa analogiapuolta äärimmilleen kvantisoimalla D/A-muunnettava signaali 1-bittiseksi. Ratkaisusta käytetään nimeä kohinanmuokkaus, englanniksi noise shaping tai sigma delta modulation. Kvantisointi onnistuu äänenlaatua heikentämättä, kun nostetaan näytteenottotaajuus ensin riittävän suureksi. Tällöin näytteiden suuri määrä kompensoi niiden heikkoa tarkkuutta. Pelkkä ylinäytteistys ei kuitenkaan vielä riitä: ilman muita temppuja näytteenottotaajuus pitäisi nostaa jopa miljardikertaiseksi, mikä ei käytännössä ole mahdollista. Siksi täytyy ottaa käyttöön alla olevan lohkokaavion mukainen takaisinkytkentä, joka aiheuttaa kvantisointivirheen siirtymisen korkeammille taajuuksille.




Korkeilla taajuuksilla kohina ei haittaa, koska se voidaan erottaa hyötysignaalista analogisella alipäästösuodatuksella D/A-muunnoksen jälkeen. Jäljelle jäävän kvantisointikohinan määrä voidaan laskea, ja havaitaan että suuruusluokassa 1500 oleva muunnoskerroin riittää (miljardien sijaan). Ratkaisua voidaan edelleen tehostaa tarkastelemalla korkeampiasteisia kohinanmuokkaimia, jotka siirtävät vieläkin tehokkaammin kvantisointikohinaa korkeammalle.

Jotkin audioformaatit kuten Super Audio CD tallentavat äänen suoraan yksibittisenä. Tästä on etuna se, että kohinanmuokkaus täytyy tehdä vain kerran äänitysstudiossa eikä jokaisessa kuluttajalaitteessa erikseen.

Toisella tunnilla käsiteltiin kappale signaaliprosessoreista. Tärkeimmät syyt niiden käyttöön ovat yksinkertaisuus, halvempi hinta sekä pienempi virrankulutus (ks. esim TI). Kuitenkin niistä saa riittävästi tehoa signaalinkäsittelyn tarpeisiin, koska alan tarvitsemat operaatiot (kertolasku, yhteenlasku) ovat nopeita sekä rinnakkaisia. Esimerkiksi FIR-suodatuksen tai kompressiossa käytettävän kaksiulotteisen DCT:n tarvitsemat kertolaskut ja yhteenlaskut voidaan pistetuloina laskea rinnakkain ns. MAC-operaation avulla. Vastaavia operaatioita on nykyisin myös tavallisissa prosessoreissa, ja ensimmäinen tällainen laajennus oli Intelin MMX-käskykanta vuodelta 1997.


Kahden viikon päästä olevissa viikkoharjoituksissa koodataan FIR-suodin luokan TC303 signaaliprosessoreille. Olennaisimmat vaiheet olivat:
  1. Suodin suunniteltiin Matlabin fir1-rutiinilla.
  2. Kertoimet kopioitiin C-koodiin.
  3. C-kieliseen pohjaan kirjoitettiin for-silmukka, jossa kertoimet käydään läpi.
  4. Ulostulonäyte kirjoitetaan D/A-muuntimelle.
Vaiheessa 3 on kiinnitettävä huomiota circular buffering-tekniikkaan, jotta viitataan oikeisiin aiemmin sisään tulleisiin alkioihin.
Aivan toisen tunnin loppupuolella luotiin katsaus GPU-laskentaan ja sen sovelluksiin koneoppimisessa. GPU on keskeinen työkalu esim. syvien neuroverkkojen opetuksessa, ja mm. GPU-valmistaja Nvidialla on oma DNN-kirjastonsa. Aiheesta lisää hahmontunnistuksen yhteydessä.

Myös Matlabissa on GPU-tuki. Seuraava koodinpätkä kertoo matriisit A ja B keskenään GPU:lla:

tic();

A = gpuArray(rand(2000, 2000));
B = gpuArray(rand(2000, 2000));
C = A * B;

elapsedTime = toc();
disp(['Matriisikertolaskuun kului ', num2str(elapsedTime), ' sekuntia.'])

 
Käyttö on siis helppoa: funktio gpuArray() siirtää matriisin GPU:lle, jonka jälkeen laskenta toimii kuten muutenkin.

Omalla kannettavallani (Intel i7 + Nvidia NVS 5200M) GPU-versio on noin 4 kertaa nopeampi kuin CPU-versio (joka saadaan poistamalla gpuArray-funktio).

keskiviikko 1. huhtikuuta 2015

Luento 1.4: Näytteenottotaajuuden muuntelu


Tänään desimointi ja interpolointi, jotka toimivat kokonaislukukertoimilla. Näitä yhdistelemällä saadaan kaikki rationaalikertoimet. Molemmat operaatiot tarvitsevat alipäästösuodattimen, joka on yleensä FIR, ja suunnitellaan normaaleilla menetelmillä. Suotimen siirtymäkaistasta todettiin, että se laitetaan aina rajataajuuden alapuolelle. Näin signaaliin tulee vähemmän virhettä kuin jos laskostumista pääsisi tapahtumaan.

Desimoinnissa tapahtuva näytteenottotaajuuden pieneminen toteutetaan yksinkertaisesti jättämällä näytteitä pois tasaisin väliajoin. Esimerkiksi kertoimella kolme jätetään vain joka kolmas näyte jäljelle. Tämä kuitenkin aiheuttaa laskostumista, koska signaalin sisältämät taajuudet pysyvät samoina mutta näytteenottotaajuus pienenee. Tämä saadaan luonnollisesti estettyä suodattamalla signaali ennen alinäytteistämistä sopivalla alipäästösuotimella.

Interpolointi puolestaan koostuu nollien lisäämisestä sekä tämän operaation tuottamien roskien poistamisesta. Nollien lisääminenhän tuottaa kopioita ja peilikuvia alkuperäisestä spektristä, jotka voidaan myös poistaa kätevästi alipäästösuodatuksella. Oikealla olevassa kuvassa on luennolla ollut esimerkki näytteenottotaajuuden kolminkertaistamisesta, jossa kahden näytteen väliin sijoitetaan aina 2 nollaa (yläkuva). Alakuvassa on tuloksen spektrogrammi, jossa näkyy selkeästi kolme versiota alkuperäisestä (kaista 0-4000 Hz) taajuuskaistasta (kopio-peilikuva-kopio).

Kappaleessa luodaan myös katsaus interpoloinnin ja desimoinnin yhdistämiseen, jolloin päästään yksinkertaisempaan rakenteeseen huomaamalla kokonaisuudessa olevan kaksi suodatinta peräkkäin, jotka molemmat poistavat tietyn kaistan ylätaajuuksilta. Näin ollen vain toinen niistä on tarpeellinen. Piirtämällä kuva näiden suodinten amplitudivasteista voidaan päätellä kumpi on tarpeeton (aina se, jota vastaava muunnoskerroin on isompi).

Toisen tunnin lopuksi tutustuttiin interpoloinnin sovellukseen D/A-muunnoksessa. Menetelmää käytettiin jo ensimmäisissä CD-soittimissa 1980-luvun alussa ja sen ideana on tehostaa nollannen asteen pitopiirin toimintaa nostamalla näytteenottotaajuus korkeammaksi ennen pitopiiriä. Tämä näkyy aikatasossa porraskuvion hienontumisena ja tätä kautta pitopiirin virheen pienenemisenä jä siirtymisenä korkeammille taajuuksille. Taajuustasossa yli 22,05 hertsin taajuuksille tulee vastaavia heijastuksia kuin interpoloinnin yhteydessäkin. Erona on, että nyt heijastumat vaimenevat sitä enemmän mitä korkeammalle mennään. Digitaalinen interpolointi helpottaa näiden heijastusten poistamista: ilman digitaalista interpolointia tarvittavan analogisen suotimen siirtymäkaistan leveys olisi 2,05 kHz (20kHz...22.05kHz), kun esim. nelinkertaisella interpoloinnilla se saadaan yli 130 kHz:n levyiseksi (väli 20kHz...154,35 kHz).

keskiviikko 25. maaliskuuta 2015

Luento 25.3: Äärellinen sananpituus


Tänään käsiteltiin äärellisen sananpituuden vaikutuksia. Meidän tarkastelussamme nämä ilmenevät A/D-muunnoksen yhteydessä sekä suodatettaessa äärellisellä laskentatarkkuudella. Pääpaino on ensimmäisessä tyypissä. Luennolla käsiteltiin näytteistyksessä käytettävät kvantisointitasot: esimerkiksi (1+7) bitin esityksessä käytettävissä ovat seuraavat 256 tasoa: -128/128, -127/128, ..., 0, ..., 126/128, 127/128. 
 
Pyöristettäessä lähimpään lukuun syntyvä kvantisointivirhe on aina välillä -1/256...1/256. Yleisesti pyöristys (1+b) bittiin aiheuttaa enintään virheen 2^(-b) / 2 suuntaan tai toiseen. Vasemmalla olevassa kuvassa on esimerkkitapaus jossa "seiska" kvantisoidaan 1+9 bittiin.

 
Seuraavaksi tätä yksinkertaista virhemallia käytettiin johdettaessa arvio virheen varianssille, joka on suoraan verrannollinen syntyvän kvantisointivirheen tehoon. Tätä kautta määritellään SNR, eli signaali-kohinasuhde, eli häiriöetäisyys. Tämä suure kertoo jotain äänenlaadusta, ja saatavia tuloksia tullaan tarvitsemaan kappaleessa 6, kun päätellään montako bittiä signaalista uskalletaan poistaa kompressiossa ilman äänenlaadun havaittavaa heikkenemistä.

Jos ehtojen oletetaan olevan voimassa, voidaan osoittaa kohinan odotusarvon olevan nolla ja varianssin yhtä kuin 2^(-2b) / 12.


Yllä olevaa kaavaa voidaan edelleen jalostaa signaali-kohinasuhteen käsitteeksi (SNR), joka kertoo signaalin tehon suhteessa kohinan tehoon. Kun kaavaa pyöriteltiin, havaittiin jokaisen ylimääräisen bitin (per näyte) nostavan SNR:ää kuudella desibelillä.

Lopuksi johdettiin kaava varianssille suodatuksen jälkeen ja sekä tutkittiin suotimen kertoimien pyöristämisen vaikutusta. Tämähän täytyy tehdä aina kun suodin toteutetaan huonomman tarkkuuden alustalla kuin Matlab (esim. tällä 17-bitin DSP:llä).

Toisen tunnin lopuksi käsiteltiin alku kappaleesta "näytteenottotaajuuden muuntelu". Kappale tarkastelee menetelmiä, joilla voidaan muuntaa näytteenottotaajuus näytteistämisen jälkeen toiseksi. Perusoperaatiot ovat desimointi ja interpolointi, jotka toimivat kokonaislukukertoimilla. Näitä yhdistelemällä saadaan kaikki rationaalikertoimet. Molemmat operaatiot tarvitsevat alipäästösuodattimen, joka on yleensä FIR, ja suunnitellaan normaaleilla menetelmillä.