tiistai 27. tammikuuta 2015

Luento 28.1: Fourier-muunnos

Luennon aluksi käsiteltiin kappale 2 loppuun. Tällöin tutustuttiin konvoluution ominaisuuksiin (laskentasäännöt: a(b+c) = ab+ac, kausaalisuuden ja stabiilisuuden tunnistus impulssivasteesta, jne.). Konvoluution ominaisuuksien käsittelyn yhteydessä tuotiin esille niiden yhteys LTI-järjestelmien yhdistämiseen: peräkkäiset tai rinnakkaiset LTI-järjestelmät voidaan esittää yhtenä järjestelmänä ja toisaalta niiden järjestys ei vaikuta lopputulokseen.

Kappaleen lopussa määriteltiin FIR- ja IIR-suotimet LTI-järjestelmien alalajeina. FIR-suotimet ovat yksinkertaisuutensa vuoksi laajemmin käytettyjä, mutta IIR-suodinten ilmaisuvoima ja laskennallinen tehokkuus tekevät niistä hyödyllisiä useissa tilanteissa.

Testikysymys: onko seuraava suodin FIR vai IIR?

   y(n) = 0.9 y(n-1) - y(n-2) + x(n) + 0.5 x(n-1) +2 x(n-2)

Haastavampaa on selvittää esim. se, onko yo. suodin stabiili. Tähän ratkaisu löytyy prujun sivulta 68, johon pääsemme aikanaan.


Toisella tunnilla päästiin kappaleeseen 3: Fourier-muunnos. Olennaisin asia käsitteli muunnoksen ideaa alla olevan kuvan mukaisesti. Fourier-muunnoksen idea on kysyä paljonko eri taajuuksia annetussa signaalissa on. Taululla oli alla olevan piirroksen kaltainen kuva. Kuvan "yhtälössä" vasemmalla oleva signaalin pätkä jaetaan eri taajuuksiin kysymällä paljonko tarvitaan vakiotaajuutta (0.3 kpl), paljonko kerran värähtävää siniä (0.6 kpl), jne. Sama idea on kaikkien neljän muunnostyypin takana, mutta erona on montako eri taajuutta tarvitaan muodostamaan alkuperäinen signaali. Joissain tapauksissa niitä tarvitaan äärettömän paljon, jolloin kuvan summan sijaan tarvitaan integraali.

Jatkuvat tapaukset perustuvat siis integraalin laskentaan, ja käytännössä tämä täytyy tehdä muunnostaulukoiden avulla.

Käsin laskettavien kolmen ensimmäisen muunnostyypin jälkeen tutustuttiin lopuksi diskreettiin Fourier-muunnokseen, joka voidaan esittää matriisimuunnoksena. Muunnosmatriisi muodostetaan lisäämällä rivi kerrallaan ykkösen n:nnen juuren eri potensseja. Lopuksi esitettiin tällaisen matriisin konstruointi yksikköympyrän avulla tapaukselle N = 4.
Muunnosmatriisin konstruointi esitettiin "mekaanisesti", joten luennon jälkeen tuli hyvä kysymys mistä kyseinen mekaaninen sääntö sitten tulee. Kaava voidaan johtaa esim. y.o. kuvan avulla. Merkitään vasemman puolen signaalia x:llä, oikean puolen kertoimia (0.3, 0.6, jne) merkinnällä X ja oikealla olevia taajuuskomponentteja merkinnällä F. Tällöin kuva voidaan ilmaista kaavamuodossa
   x = X * F

Nyt vektorit ovat kuitenkin visualisointisyistä vaakavektoreita, joten oikeampi esitys saadaan transponoimalla molemmat puolet:

   xT = FT * XT

Tästä halutaan ratkaista vektori XT:

   XT = (FT)-1 * XT

Näin ollen muunnosmatriisi onkin itse asiassa matriisin FT käänteismatriisi, missä F koostuu eritaajuuksisista kompleksisista eksponenttifunktioista.


Ei kommentteja:

Lähetä kommentti